===== Auxiliares ===== ==== tan x + cot x ==== * tan x + cot x ~=~ sec x . csc x * tan^2 x + cot^2 x ~=~ sec^2 x . csc^2 x ==== sec x + csc x ==== * sec^2 x + csc^2 x ~=~ sec^2 x . csc^2 x, α =/= nPI/2 n ∈ Z ==== sen x + cos x ==== * (sin x ± cos x)^2 ~=~ 1 ± 2 sin x . cos x * (sin x + cos x + 1)(sin x + cos x - 1) ~=~ 2 sin x . cos x * (1 ± sin x ± cos x )^2 ~=~ 2 (1 ± sin x)(1 ± cos x) ==== sin^4 x ==== * 8 sin^4 x ~=~ 3 - 4 cos 2x + cos 4x * 8 cos^4 x ~=~ 3 + 4 cos 2x + cos 4x ==== sin^4 x + cos^4 x ==== * sin^4 x + cos^4 x ~=~ 1 - 2 sin^2 x . cos^2 x * sin^4 x + cos^4 x ~=~ 3/4 + 1/4 {cos 4x} ==== sin^4 - cos^4 ==== * sin^4 x - cos^4 ~=~ sin^2 x - cos^2 x * sec^4 x - tan^4 ~=~ sec^2 x + tan^2 x * csc^4 x - cot^4 ~=~ csc^2 x + cot^2 x ==== sin^6 x + cos^6 x ==== * sin^6 x + cos^6 x ~=~ 1 - 3sin^2 x . cos^2 x * sin^6 x + cos^6 x ~=~ 5/8 + 3/8 {cos 4x} ==== Sin Clasificar ==== * 4 sin^3(x) = 3sin(x) - sin(3x) * 4 cos^3(x) = 3cos(x) + cos(3x) Se infiere de [[academia:numeros:trigonometria:angulo_doble#cos_2x|Cos 2x]] : * 2.sin^2(x) = 1 - cos(2x) * 2.cos^2(x) = 1 + cos(2x)